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Abstract—While self-regulated learning (SRL) is essential to
student success, its recursive and social dimensions are difficult
to capture with traditional models. This paper develops and
analyzes an agent-based simulation model that integrates the
SRL framework with task complexity and the Community of
Inquiry (Col) constructs of teaching presence (instructor feed-
back) and social presence (peer feedback) to better understand
learners’ performances. The model simulates a population of
learners progressing through four SRL phases-task definition,
goal setting, enacting tactics, and adaptation-while dynamically
updating internal attributes such as self-efficacy, effort allocation,
metacognitive awareness, and monitoring. Simulation findings
show that the presence of both instructor and peer feedback
significantly improves learner performance, particularly under
high task complexity. Learners exposed to both feedback types
consistently reached the adaptation phase more frequently and
displayed higher mean effort and metacognitive awareness than
those without feedback. In contrast, when feedback was disabled,
performance remained consistently the same without any increase
or improvement. Notably, task complexity had minimal effect
on performance unless mediated by feedback. These findings
underscore the importance of combining instructional and social
support in promoting efficient learning environments based on
personalized learning dynamics in digital twin settings.

Index Terms—Self-regulated learning, Community of Inquiry,
Digital twin, Agent-based simulation

I. INTRODUCTION

Self-regulation refers to a process involving “self-generated
thoughts, feelings, and behaviors that are oriented to attaining
goals” ([1],p. 65). In learning contexts, self-regulated learners
monitor and adjust cognitive, motivational, and behavioral
strategies to achieve success. This process is especially critical
in online and MOOC environments, where instructor presence
is limited and learners must exercise greater autonomy. Prior
research highlights the importance of fostering metacognitive
awareness, strategic planning, and adaptive control to promote
engagement and course completion in digital settings [2]. Yet
learners often struggle to accurately self-monitor and sustain
motivation, particularly when feedback and scaffolding are
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minimal. This underscores the need for external systems that
provide responsive, personalized support for SRL.

Digital twins (DTs) are virtual representations of learners
that mirror cognitive, behavioral, and affective states and offer
new possibilities for modeling and supporting SRL. DTs are
applied in education to enable individualized instruction, track
performance, and simulate learning processes under varying
conditions [3-5]. Advances like virtual reality and generative
Al-powered digital twins show promise for boosting motiva-
tion and adaptive learning [4]. The Community of Inquiry
(Col) framework provides a complementary lens for under-
standing how teaching presence and social presence shape
these learning processes in online environments [6]. Despite
advances in DTs, little work has systematically explored how
DT environments can model the dynamic interplay between
SRL processes, instructional feedback, peer interaction, and
task complexity. Understanding this is especially important in
large-scale online programs where learners face high variabil-
ity in task demands and available support.

The contribution of this study is the development of a
novel agent-based simulation digital twin of self-regulated
learners, to examine how combinations of teaching and social
presence, operationalized as instructor and peer feedback,
interact with task complexity to shape learner performance.
Our model simulates learners progressing through the SRL
cycle, enabling controlled exploration of how feedback and
complexity influence self-regulatory behaviors in open-access,
self-paced learning MOOC contexts.

This paper is structured as follows. Section IIdescribes the
background, Section III details the simulation model, Section
IV presents the findings. Section V concludes the paper.

II. BACKGROUND

We aim to examine how teaching and social presence
moderate learners’ progression through the SRL cycle and
how task complexity shapes learners’ transitions across SRL



phases. By modeling these dynamic interactions, the study
contributes to the design of adaptive, data-informed systems
that simulate and support students’ learning processes.

A. Self-Regulated Learning and Co-Regulation

Winne and Hadwin’s SRL model conceptualizes learning as
a cyclical, loosely sequenced process consisting of four key
phases [7]. In Phase 1 (Task Definition), learners construct an
understanding of the task’s requirements and learning context.
Phase 2 (Goal Setting and Planning) involves setting specific
learning goals and selecting strategies or tactics to achieve
them. Phase 3 (Enactment of Study Tactics) is the imple-
mentation of those cognitive strategies (e.g., summarizing,
note-taking, elaborating) while continuously monitoring one’s
performance. Finally, Phase 4 (Adaptation) entails reflecting
on outcomes by comparing performance against standards or
goals and making adjustments to one’s approaches for future
tasks [7]. Throughout this cycle, metacognitive monitoring
and feedback play a central role: learners generate internal
feedback by evaluating learning products against standards,
which then informs strategy adjustments [7].

Building on this model, SRL has been extended to include
co-regulation, the process through which learners support each
other’s regulatory behaviors via socially shared interactions
[8]. Co-regulation acts as a scaffold that helps learners in-
ternalize self-regulatory skills through feedback, modeling, or
prompting from peers, instructors, or digital tools. In collab-
orative learning contexts, learners often co-construct goals,
monitor progress together, and engage in shared reflection and
adaptation.

B. Col Framework

The socially mediated view of SRL aligns closely with the
Col framework which posits that meaningful online learning
arises from the dynamic interaction of three core elements
[9]. Teaching presence refers to the design, facilitation, and
direction of learning activities that foster engagement and
knowledge construction. Social presence captures learners’
ability to present themselves authentically, engage in open
communication, and develop interpersonal relationships. Fi-
nally, cognitive presence reflects learners’ capacity to construct
and confirm meaning through sustained reflection and dialogue
[6]. Recent research emphasizes that teaching and social
presence support collaborative learning and shape both self-
and co-regulated learning behaviors in online environments.
Teaching presence provides structured guidance that supports
goal setting and adaptation, while social presence fosters
peer feedback, motivation, and the co-construction of learning
strategies [8].

C. DT in Education

DTs offer dynamic representations of learners and their in-
teractions with learning environments, making them promising
tools for modeling and supporting SRL [3-5]. For example,
DT-based hybrid learning models have improved the prediction
of learning outcomes and enabled timely interventions [3],

while virtual reality-integrated DT systems enhance learner
motivation and reduce cognitive load by synchronizing phys-
ical and virtual practice. In addition, generative Al-powered
DTs provide scalable, adaptive learning environments aligned
with learners’ cognitive stages and developmental needs [4],
and digital student profiles constructed through DTs offer ac-
tionable insights for instructors and institutions, enabling per-
sonalized learning trajectories and real-time support [5].These
developments suggest that DTs can serve as experimental plat-
forms for modeling and refining SRL strategies by embedding
students in interactive simulations that reflect and adapt to their
evolving understanding and behaviors. To examine dynamic
interactions, we leverage an agent-based model (ABM) [10],
which enables controlled simulation of learners progressing
through SRL cycles while interacting with varying task de-
mands, peer influences, and instructional feedback. In this
framework, individual agents represent learners with dynamic
attributes and behaviors, enabling us to model how SRL pro-
cesses unfold through interactions with peers, instructors, and
varying task demands. We examine the following objectives:

Research Objective 1: analyze the impact of social pres-
ence (via peer feedback) on learners’ performance.

Research Objective 2: investigate how varying task com-
plexity shapes learners’ transitions across SRL phases and the
overall performance.

III. METHODOLOGY

To investigate the dynamics of student learning behavior in
complex and interactive environments, we developed an agent-
based simulation model using NetLogo, a widely used platform
for simulating natural and social phenomena [11, 12]. NetLogo
provides a simulation environment for modeling individual
agents (in our case, students) and their interactions within
a specified spatial and behavioral framework [13]. In our
model, each student is represented as a turtle —NetLogo’s
term for an individual agent that can move, situated within
a two-dimensional grid of patches that represents the MOOC
learning environment. Each student agent embodies cognitive
and metacognitive processes observed in human learners,
such as task understanding, self-efficacy, effort allocation, and
strategy adaptation.

Figure 1 presents the initial setup of the simulation interface,
depicting students within a MOOC environment. On the left-
hand side of the interface, several interactive controls are in-
cluded to adjust key parameters that influence student behavior
and learning outcomes. These include:

o Task Complexity: A slider that determines the over-
all difficulty of learning tasks across the MOOC envi-
ronment. This affects how much challenge each patch
presents to student agents. Internally, this is linked to the
challenge-factor variable and determines the challenge-
intensity assigned to each patch. Students move through
the environment, encounter challenges, and adjust their
academic performance based on internal and external
factors. The task-complexity-slider ranges from O to 1,
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Fig. 1. Initial setup of the simulation interface depicting students within a
MOOC environment.

with O representing no challenge and 1 indicating the
highest level of challenge.

e Number of Learners: A slider for setting the total
number of student agents in the MOOC environment.
This enables the exploration of group size effects and
the scalability of peer influence.

o Peer Feedback (On/Off): A boolean switch that enables
or disables the role of peer interaction. When activated,
the model allows agents to compute peer-influence
based on the average performance of nearby agents
within a given radius. This influences the agents’ effort
adjustment, metacognitive adaptation, and the overall
performance.

o Instructor Feedback (On/Off): A switch to control
whether students receive feedback from an external
source (i.e., instructor). This can be modeled by pe-
riodically boosting the performance or metacognitive
awareness of selected agents. If enabled, instructor in-
terventions can support students in recovering from low
performance.

o Goal-Setting Percentage: A slider that specifies the
proportion of student agents who are actively engaged
in goal-setting. These agents may demonstrate higher
baseline effort or metacognitive awareness, simulating the
impact of intentional goal-directed behavior on learning
outcomes.

Each of these parameters can be adjusted dynamically,
allowing the model to simulate and analyze various learning
scenarios within MOOC-like environments.

Our model is further developed to simulate the learners’
decision-making and phase transitions across the SRL cycle.
The simulation incorporates four primary parameters. The first
one is representing the four stages of SRL — Task Definition,
Goal Setting, Enacting Tactics, and Adaptation. Agent colors
dynamically change to reflect their current phase within the
SRL cycle (See Figure 2).

In the simulation, each SRL phase is visually distinguished
by a unique color to aid interpretation and tracking of learner

Fig. 2. Simulation interface showing the majority of students reached Phase
2, while a few reached Phase 3 after the simulation completion.

progression:

o Phase 0 — Task Definition:

o Phase 1 — Goal Setting & Planning:
o Phase 2 — Enacting Tactics: Magenta
o Phase 3 — Adaptation: Blue

For example, when a learner shifts from defining the task to
setting goals, their color transitions from ( ) to ( ).
The agent behaviors, phase transitions, and color changes are
updated at each simulation tick. One tick represents a single
day, reflecting the daily rhythm of SRL, peer interaction, and
instructional feedback in a typical MOOC environment.

Additionally, each learner agent possesses a set of internal
attributes to model their cognitive and self-regulatory ca-
pacities. These attributes are prior knowledge and perceived
task clarity (task understanding), self-efficacy (belief in one’s
ability to succeed), metacognitive awareness, effort alloca-
tion, metacognitive monitoring, metacognitive evaluation (self-
regulatory skills).

Algorithm 1 outlines the steps used to construct the sim-
ulation, following the SRL cycle while incorporating both
external factors and learners’ internal attributes.

In Phase 0 (Task Definition), learners assess how clearly
they understand the task. If they have high self-efficacy and
clarity, they may skip goal setting. If a learner skips the goal-
setting phase, the simulation interface updates their visual
representation from a person to a smiley face, indicating
confidence or perceived readiness to proceed.

In Phase 1 (Goal Setting), learners plan their approach.
If instructor feedback is enabled, their self-efficacy increases,
especially on harder tasks. Learners who performed well in
the previous cycle may also gain confidence. Metacognitive
awareness increases slightly during this phase.

In Phase 2 (Enacting Tactics), learners apply strategies and
adjust their effort. If peer feedback is available, it gives a small
boost to effort and awareness. Effort also increases based on
how much capacity the learner has to improve (diminishing
returns). Monitoring and awareness continue to grow, and
performance is computed as a product of effort, self-efficacy,
and monitoring, adjusted for task difficulty.



In Phase 3 (Adaptation), learners reflect. If their average
effort and monitoring are low, they adapt by increasing their
self-efficacy and awareness. After this, they start the next SRL
cycle.

Algorithm 1 SRL Simulation Cycle per Learner
1: Initialize each learner’s state: effort F, self-efficacy S,
awareness A, monitoring M
2: Set global parameters: task complexity C, instructor feed-
back T', peer feedback P
3: for each tick do

4. for each learner do
5: Phase 0 (Task Definition): If S > 0.6 and perceived
clarity is high, skip Phase 1
Phase 1 (Goal Setting):
if T is enabled then
Increase S based on task difficulty: S < S +
0.05(1+C)
9: end if
10: if last performance > 0.6 then
11: Slightly reinforce S
12: end if
13: Increase awareness: A <+ A + e
14: Phase 2 (Enacting Tactics):
15: if P is enabled then
16: Boost ' and A: +0.05 each
17: end if
18: Increase E with diminishing returns: £ 4 e2(1 — E)
19: Update M: M < M + 3
20: Compute performance: P=F-S-M-(1-C)
21: Phase 3 (Adaptation):
22: if average of £ and M < 0.5 then
23: Adjust strategy: increase S and A by 0.1
24: end if
25: Reset to Phase 0
26:  end for
27: end for

IV. RESULTS

This section explores the learner’s performance at each time
step as a composite index derived from effort allocation, self-
efficacy, and metacognitive monitoring. The resulting value is
bounded within the [0, 1] range and represents a latent measure
of effective engagement with the learning task.

Figure 3 highlights agents that bypass the goal-setting phase
as a result of elevated self-efficacy and clear task perception,
denoted by a smiley face icon (transitioning from Phase
0 to Phase 2). This behavior was observed after 10 ticks
(interpreted as days), under conditions where task complexity
was set to 0 and 1 (i.e., no challenge and highest challenge),
and both instructor and peer feedback were enabled. This
shows that at the beginning of learning (the first 10 days), the
task complexity, high or low, does not have much influence
on the phase changes. We can see that most other learners
remained in either Phase 1 or Phase 2, with only three learners

Fig. 3. Output of phase transitions after 10 ticks, under conditions of zero
task complexity and when the task complexity is 1, and enabled peer and
instructor feedback.

having reached Phase 3 (Adaptation). After continuing the
simulation for 50 ticks, with Task-complexity 0, as shown
in Figure 4, the majority of learners progressed to either the
Enacting Tactics or Adaptation phases, demonstrating overall
advancement through the SRL cycle.

Fig. 4. Output of phase transitions after 100 ticks, under conditions of zero
task complexity and enabled peer and instructor feedback.

When testing the effects of task complexity, we compared
two scenarios: one with minimal task complexity (set to O -
See Figure 4) and another with high task complexity (set to
0.9 or 1.0). In both cases, the simulation was executed for 100
ticks. Under low task complexity, learners progressed through
the SRL phases more rapidly, with a majority reaching the final
phase—Adaptation—within the allocated simulation time.

In contrast, when task complexity was high, most learners
remained in the third phase—Enacting Tactics—and several
learners were still observed in the Goal Setting phase. This
output suggests that higher task complexity causes cognitive
and metacognitive challenges that may slow down learners’
progression through the SRL cycle. This highlights the im-
portance of balancing challenge with support, as complex
problems may hinder learners’ ability to complete the full
cycle of self-regulation within a short time span.



Fig. 5. Output of phase transitions after 100 ticks, under conditions of high
task complexity (0.9 and 1) and enabled peer and instructor feedback.
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Fig. 6. Performance output generated after 100 ticks, under conditions of
minimal task complexity (0.3 and less) and enabled peer and instructor
feedback.

When the task complexity is set to 0.9 - 1, learners’ perfor-
mance drops to minimal levels, often approaching zero. These
results suggest that when task complexity is high, substantial
cognitive input is necessary to effectively apply SRL strategies.
Despite having mechanisms for goal setting, effort allocation,
metacognitive adaptation, as well as the support from peers
and the instructor, the overwhelming nature of highly complex
tasks appears to suppress performance gains. These results
underscore the critical role of appropriately calibrated task
difficulty in supporting effective learning progression.

During our simulation runs, we observed that learners who
completed the goal-setting phase consistently demonstrated
higher performance compared to those who skipped it—except
in scenarios where instructor feedback was disabled. In that
condition, the performance gap between goal-setters and non-
goal-setters diminished or disappeared as shown in Figure 7.

The output observed from Figure 7 indicates that instructor
feedback may reinforce and support the effects of goal setting,
helping students align their goals with effective strategies.
Without it, the benefit of goal setting may be less pronounced.

Figure 8 shows that performance decreases as task com-
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Fig. 7. Performance output generated after 100 ticks when Instructor
Feedback is disabled and task complexity is set to 0.2.

H Both Feedback On
Bl Peer Feedback Off
E Instructor Feedback Off
Both Feedback Off

0.8

Performance
<
o

o
~

0.2

0.0

0.0 01 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Task Complexity

Fig. 8. Performance output generated after 100 ticks, under various conditions
(1) When both feedback types are enabled, (2) when peer feedback is off and
instructor feedback is enabled, (3) when instructor feedback is off and peer
feedback is enabled, and (4) when both feedback types are disabled.

plexity increases, aligning with cognitive load theory and
common expectations in learning systems. This decline is
most pronounced in conditions where no feedback is provided.
When both peer and instructor feedback are available, learners
achieve the highest overall performance, particularly at low
to moderate levels of task complexity. Notably, this dual-
feedback condition also helps sustain relatively strong per-
formance up to a complexity level of 0.6. Instructor feedback
appears especially critical at mid to high complexity levels,
indicating its role in guiding learners through more demanding
tasks. In contrast, the absence of both feedback sources results
in the lowest performance across nearly all complexity levels.
The most performance decrease is observed when task com-
plexity exceeds 0.7, with performance dropping to close to 0
when the complexity level is set to 1.0. These findings suggest
that targeted feedback strategies are essential for maintaining
learner engagement and performance in challenging learning
environments. The level of task complexity is also critical
in creating a supportive learning environment, ensuring that
students are challenged in ways that promote growth rather
than causing them to disengage or quit due to overwhelming
demands they are not prepared to handle.

To confirm these results and compare the total learning
effectiveness under each condition by integrating performance
over the complexity range, we computed the Area Under Curve
(AUC), which confirms our previous analysis that the presence



of both peer and instructor feedback supports learners’ overall
performance (AUC value 0.65).
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Fig. 9. Metacognition Awareness output generated after 100 ticks, under
various conditions (1) When both feedback types are enabled, (2) when
peer feedback is enabled and instructor feedback is off, (3) when instructor
feedback is on and peer feedback is disabled, and (4) when both feedback
types are disabled.

Figure 9 shows that peer feedback drives metacognition
to its peak, regardless of instructor presence. Without peer
feedback, metacognitive awareness stays in the 0.8—0.85 range.
Instructor feedback alone does not raise metacognition beyond
peer-independent levels. This suggests that social presence,
modeled through peer interaction, plays a critical role in fos-
tering learners’ reflective thinking and strategic engagement.

V. CONCLUSION

This paper develops an agent-based simulation model that
integrates the SRL framework with task complexity and the
Col constructs of teaching presence and social presence to
better understand learners’ performances in a typical MOOC
situation. By simulating learners’ progression through SRL
phases in a DT environment, our model offers new insights
into how instructional and social feedback interact with task
demands to shape learning trajectories, which have previously
been underexplored in DT-based educational research. Our
findings extend prior work on SRL and co-regulation [8]
by illustrating that feedback mechanisms—particularly the
combination of instructor and peer feedback—play a critical
role in sustaining learners’ performance and metacognitive
engagement under increasing task complexity. Goal setting
emerged as a consistently beneficial self-regulatory strategy,
though its benefits were amplified when instructor feedback
was present, underscoring the synergistic potential of teaching
presence and self-regulatory planning. These findings highlight
the importance of integrating goal-setting mechanisms and
multimodal feedback into learning systems to promote adapt-
ability, and performance, particularly in self-paced MOOC
settings. Finally, we have observed the dominant role of peer
feedback in activating metacognitive processes, emphasizing

its importance in the design of collaborative SRL environ-
ments. This work contributes to a growing line of research
exploring how DTs can serve not only as predictive models but
also as experimental platforms for testing and refining adaptive
learning settings. Future work incorporates conducting verifi-
cation and validation through empirical studies.
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